

S

UNIVERSITÀ
DEGLI STUDI
DI PADOVA

CROSS-ATTENTION AND RECONSTRUCTION-REGULARIZED TRANSFORMERS FOR MULTI-LABEL CHEST X-RAY CLASSIFICATION

MACHINE LEARNING FOR HUMAN DATA
A.Y. 2025 - 2026

Ngoc Hoa Pham
Nhu Ngoc Hoang

UNIVERSITÀ
DEGLI STUDI
DI PADOVA

CONTENTS

PROBLEM OVERVIEW
LEARNING FRAMEWORKS
RESULTS
DEMO

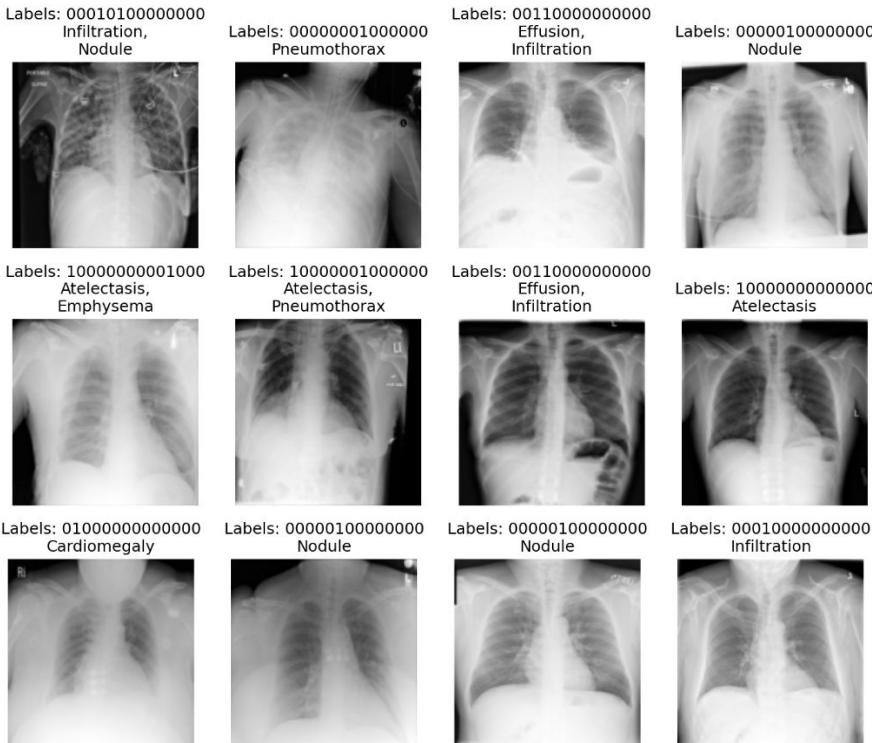
UNIVERSITÀ
DEGLI STUDI
DI PADOVA

PROBLEM OVERVIEW

Dataset
Processing pipeline

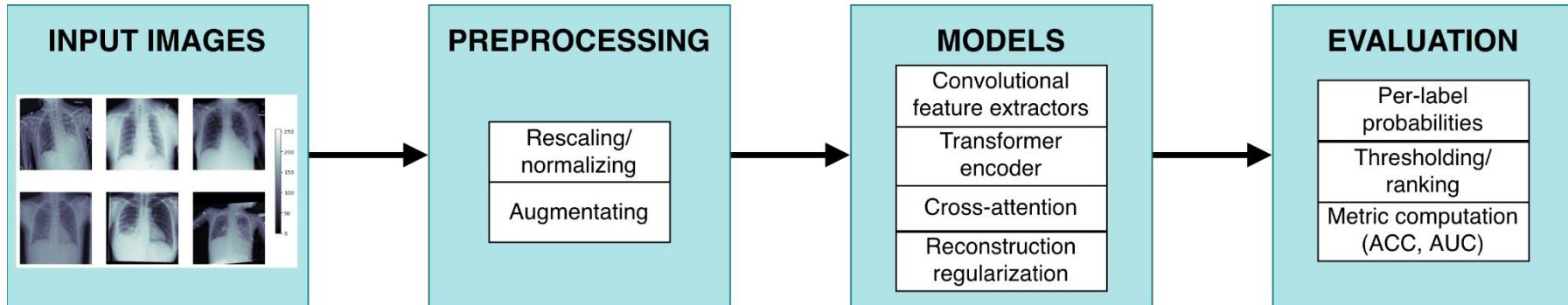
ChestMNIST dataset

- Task: multi-label lung disease classification
- Dataset: ChestMNIST [1], standardized dataset of 112,120 X-ray images from 30,805 patients
- 3 resolutions: 64×64 , 128×128 , 224×224
- Label: 14-D binary vector = 14 disease labels
- Possible to have no associated disease
- Pre-split train/validation/test sets (78,468/22,433/11,219 images)



Processing pipeline

UNIVERSITÀ
DEGLI STUDI
DI PADOVA



$$H \times H \times 1$$

Grayscale images,
each pixel = integer
in range $[0, 255]$

Rescaling

Divide all by 255 so each pixel becomes a float in range $[0, 1]$

Parameterized function mapping input image to a multi-label classification vector

Compare predicted probability vector with ground-truth vector

Augmentation

Lightweight geometric transformations: flipping, rotating, zooming, translating

Measure performance (ACC, AUC), complexity (# parameters), and latency (inference time)

UNIVERSITÀ
DEGLI STUDI
DI PADOVA

LEARNING FRAMEWORKS

Baseline models
Proposed models

Baseline models

UNIVERSITÀ
DEGLI STUDI
DI PADOVA

CNN-BASED

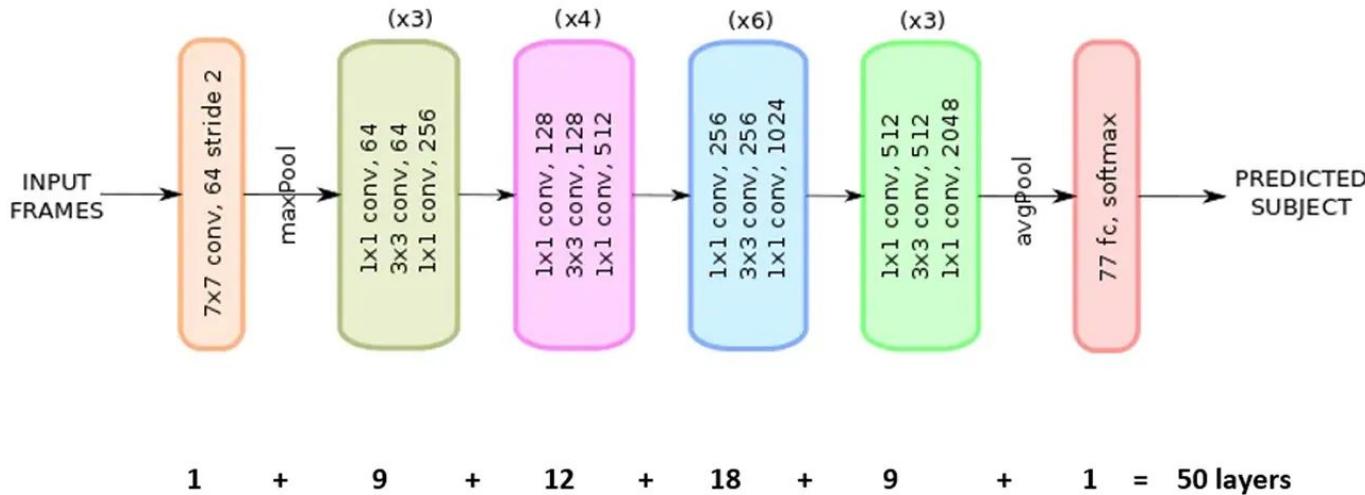
1. **ResNet50**: Residual connection
2. **DenseNet**: Dense features between layers
3. **EfficientNet-B0**: Compound scaling

HYBRID

4. **MedViT**: Vision Transformer

Baseline models - ResNet50

- 49 convolutional layers
- 1 fully connected layer.



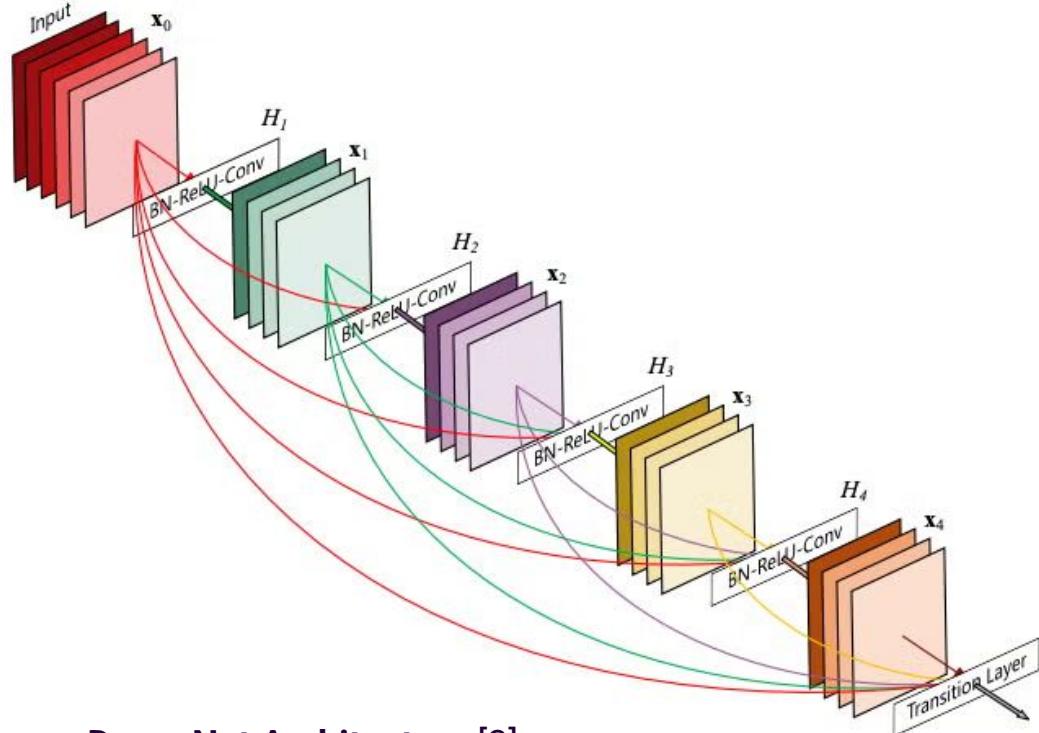
ResNet50 Architecture [2]

Baseline models - DenseNet

UNIVERSITÀ
DEGLI STUDI
DI PADOVA

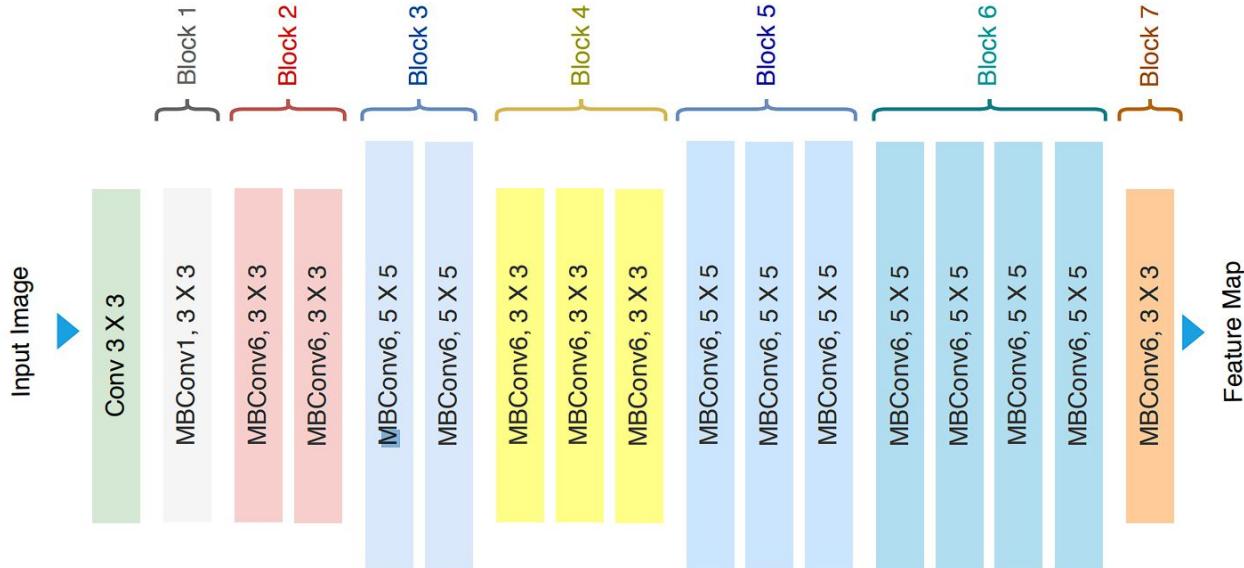
Dense connectivity between layers:

- Each layer receives feature maps from all previous layers
- Feature concatenation instead of summation



DenseNet Architecture [3]

Baseline models - EfficientNetB0



- Mobile Inverted Bottleneck (MBConv) blocks
- Squeeze-and-excitation (SE) modules

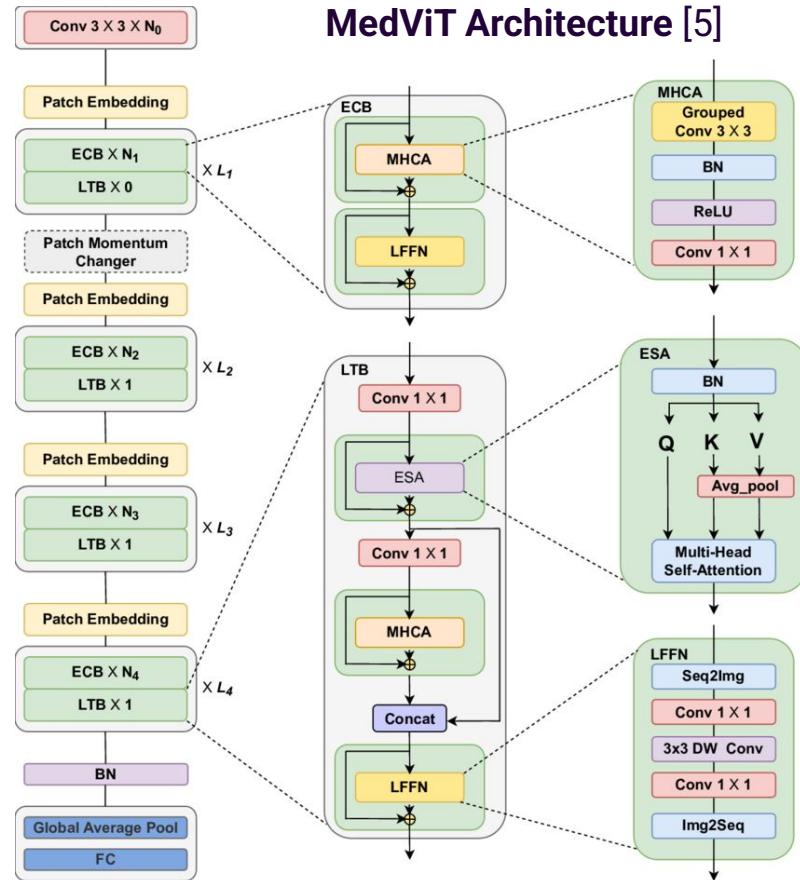
EfficientNetB0 Architecture [4]

Baseline models - MedViT

4 stages:

- Patch Embedding layer
- Efficient Convolution Block (ECB):
 - MHCA as token mixer
 - LFFN as depth-wise convolution
- Local Transformer Block (LTB):
 - Captures low-frequency signals with ESA
 - Captures parallel information with MHCA
- MHCA: Multi-Head Convolutional Attention
- LFFN: Locally Feed Forward Network
- ESA: Efficient Self-Attention

[5] [MedViT Architecture](#)



Proposed models

1. Dual Branch Cross-Attention Transformer (DBCT)

Structured cross-attention framework that explicitly models local - global features

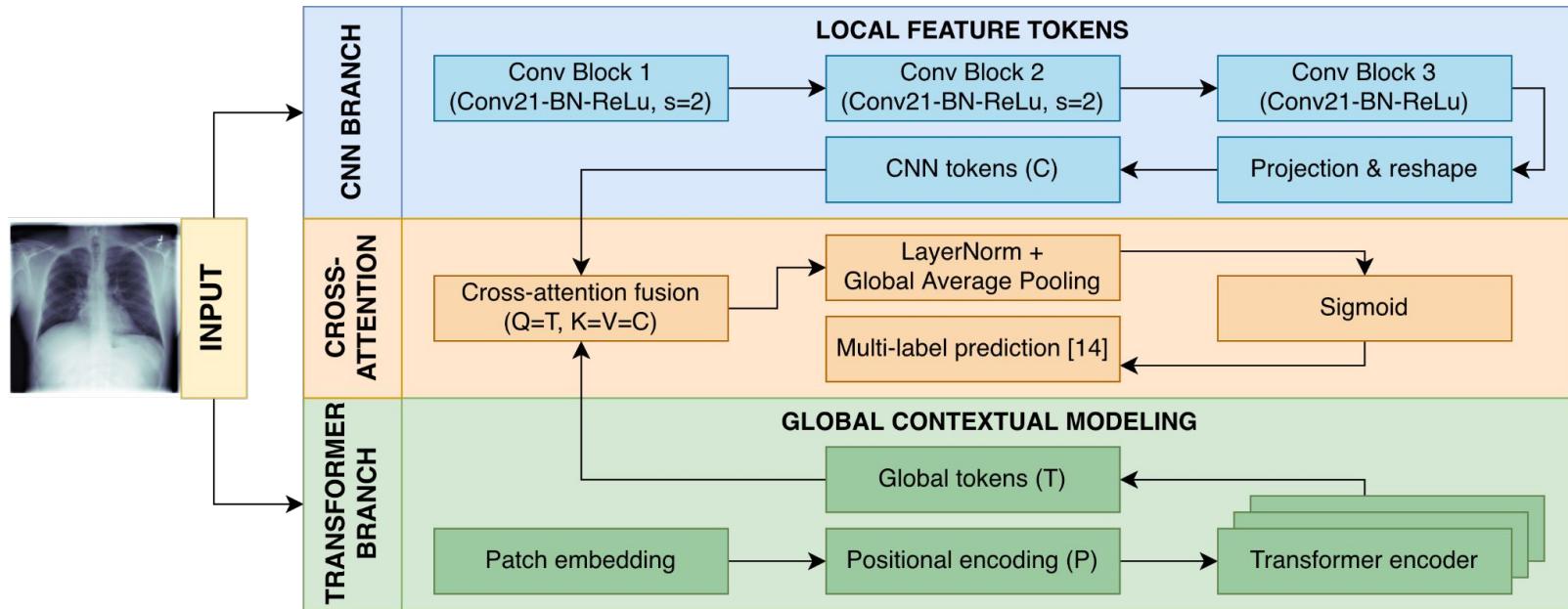
2. Reconstruction-Regularized Vision Transformer (RR- ViT)

Reconstruction-based regularization strategy

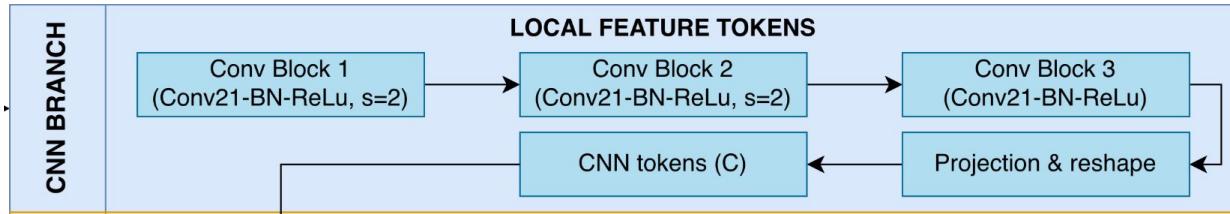
3. Hybrid Reconstruction-Regularized Vision Transformer (Hybrid RR- ViT)

Enhanced reconstruction-based regularization with convolutional stem

Dual Branch Cross-Attention Transformer (DBCT)



Dual Branch Cross-Attention Transformer (DBCT)



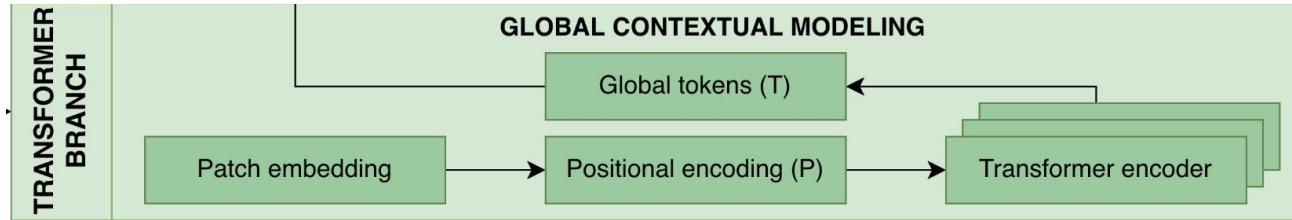
- Two convolutional layers use stride 2, progressively reducing spatial resolution:

$$H \times W \rightarrow \frac{H}{2} \times \frac{W}{2} \rightarrow \frac{H}{4} \times \frac{W}{4}$$

- A 1×1 convolution then projects the channel dimension
- The spatial grid is reshaped into a sequence of CNN tokens:

$$\mathbf{C} \in \mathbb{R}^{N_c \times D}, \quad N_c = \frac{H}{4} \cdot \frac{W}{4}$$

Dual Branch Cross-Attention Transformer (DBCT)



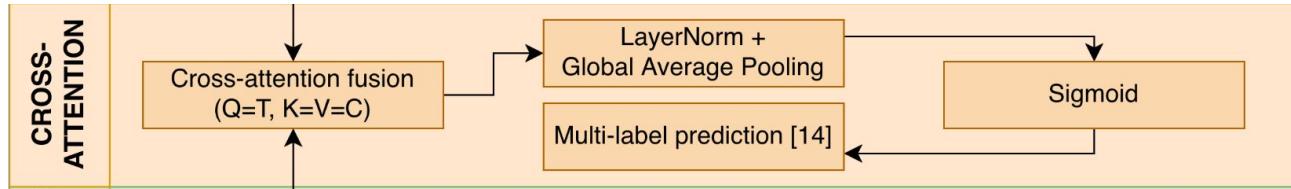
- The input image is partitioned into non-overlapping patches of size $p \times p$:

$$\mathbf{T}_0 \in \mathbb{R}^{N_t \times D}, \quad N_t = \frac{H}{p} \cdot \frac{W}{p}$$

- Positional information is encoded into the token sequence
- The Transformer encoder consists of stacked blocks comprising: multi-head self-attention, feed-forward network (MLP), and layer normalization
- Self-attention is computed as:

$$\text{Attention}(Q, K, V) = \text{Softmax} \left(\frac{QK^\top}{\sqrt{d_k}} \right) V$$

Dual Branch Cross-Attention Transformer (DBCT)



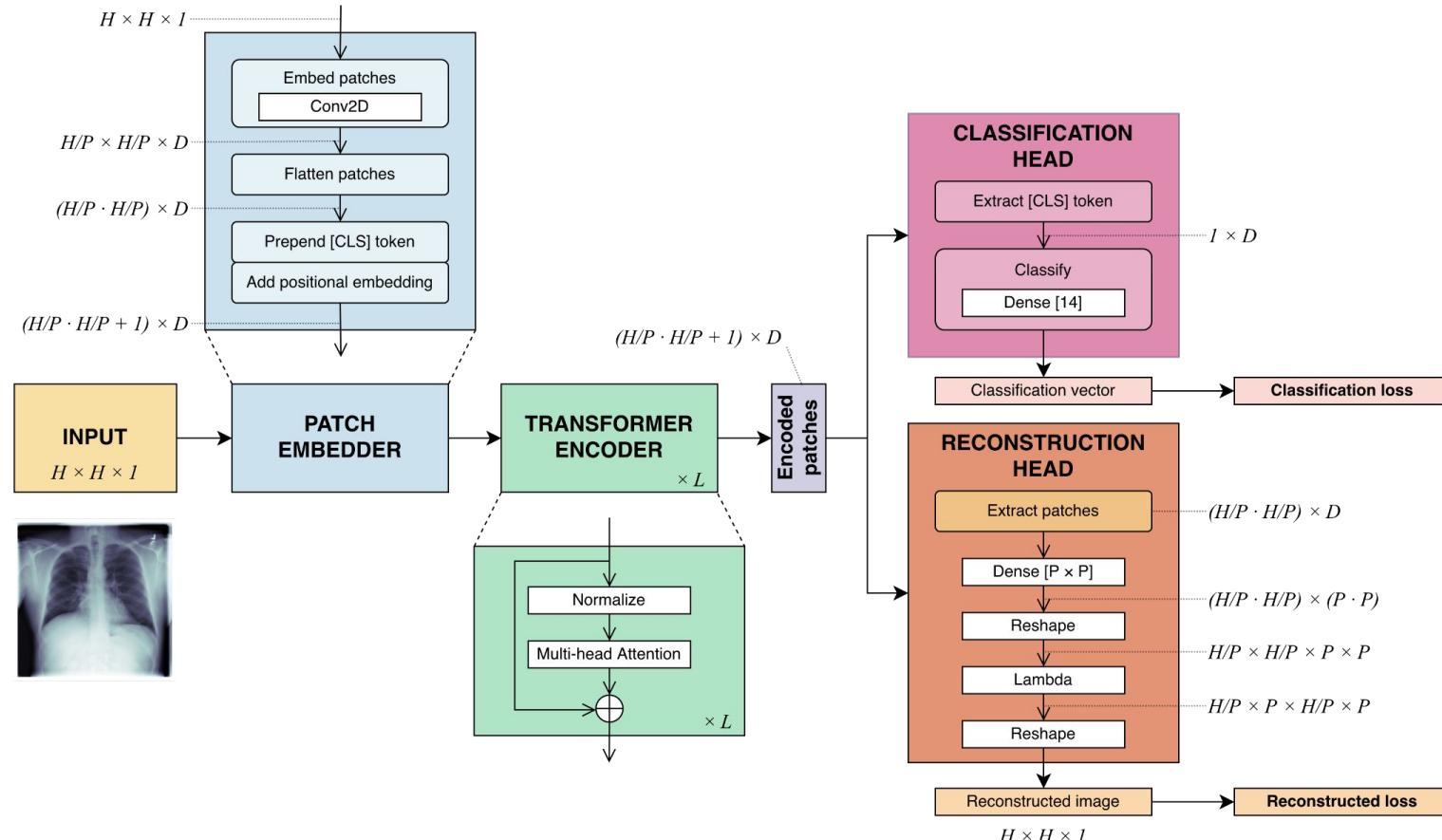
- Integrate global and local information by a cross-attention, the fused representation is computed as:

$$\mathbf{T}' = \text{Softmax} \left(\frac{QK^\top}{\sqrt{d_k}} \right) V$$

- The fused token sequence is normalized and aggregated via global average pooling
- A fully connected layer followed by a sigmoid activation produces multi-label predictions
- Focal Loss is used as loss function:

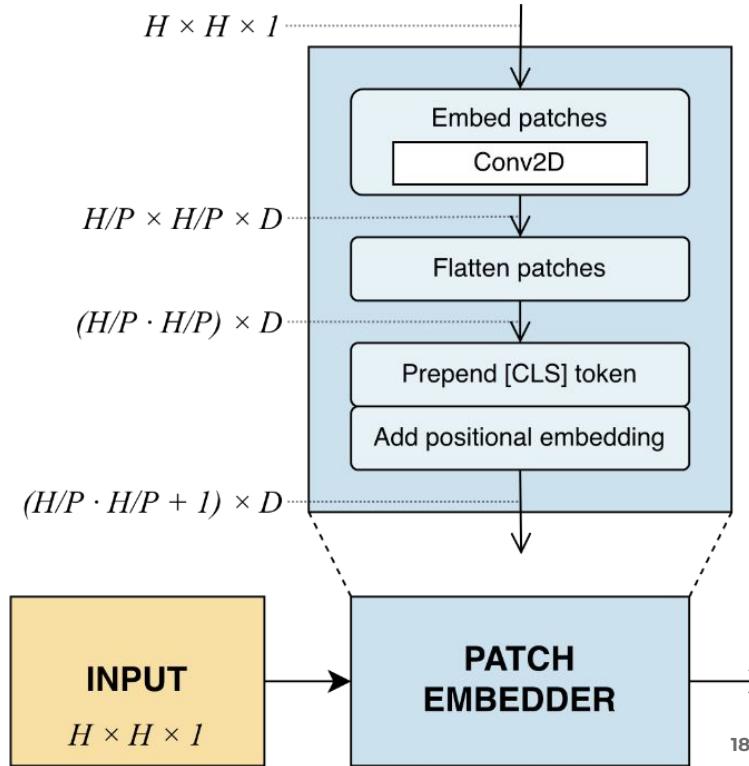
$$\mathcal{L}_{\text{focal}} = - \sum_{k=1}^{14} \alpha(1 - \hat{y}_k)^\gamma y_k \log(\hat{y}_k) - (1 - \alpha)\hat{y}_k^\gamma(1 - y_k) \log(1 - \hat{y}_k)$$

Reconstruction-Regularized Vision Transformer (RR- ViT)



RR-ViT - Patch-based encoder

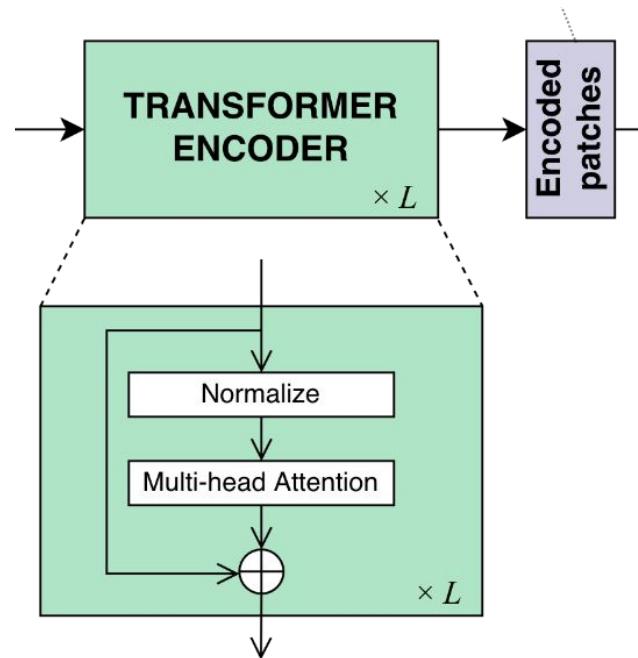
- Partitions the image into non-overlapping patches
- Each patch is mapped to a D -dimensional latent space using a learnable linear projection
- Prepend learnable [CLS] token to enable global aggregation for classification
- Add learnable 1-dimensional positional embedding to preserve spatial ordering



RR-ViT - Patch-based encoder

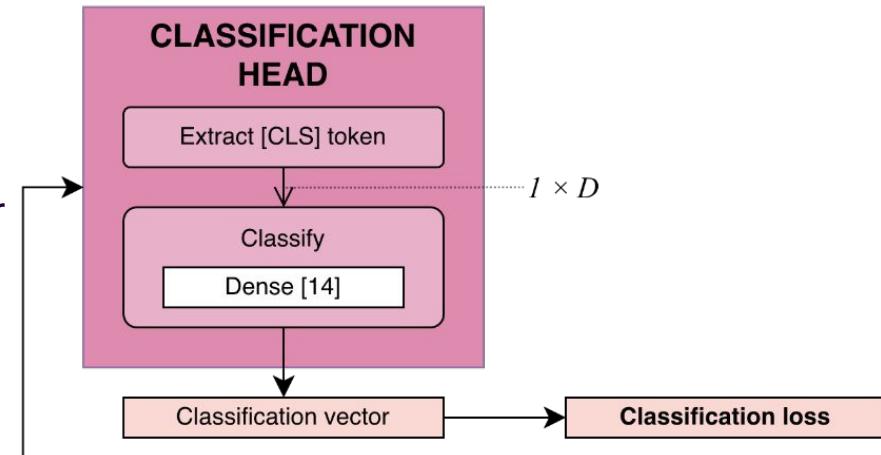


- $L=4$ stacked Transformer layers
- Minimal block with pre-normalization and multi-head self-attention (4 attention heads) with residual connections
- Lightweight design and simplified attention mechanism
- Encoded patches with dimension: $\left(\frac{H}{P} \cdot \frac{H}{P} + 1\right) \times D$



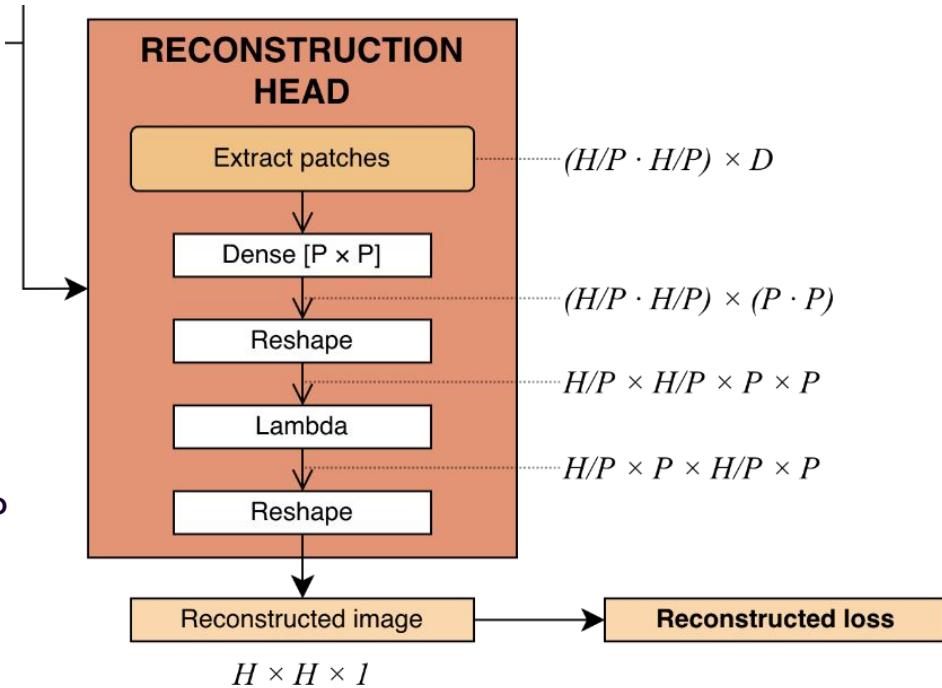
RR-ViT - Classification head

- Uses the final state of the [CLS] token; global representation of the image after having passed through attention mechanism
- Token is passed through a dropout & a dense layer with K=14 units with sigmoid activation
- Output: multi-label binary classification vector
- Classification loss: binary cross-entropy (BCE)

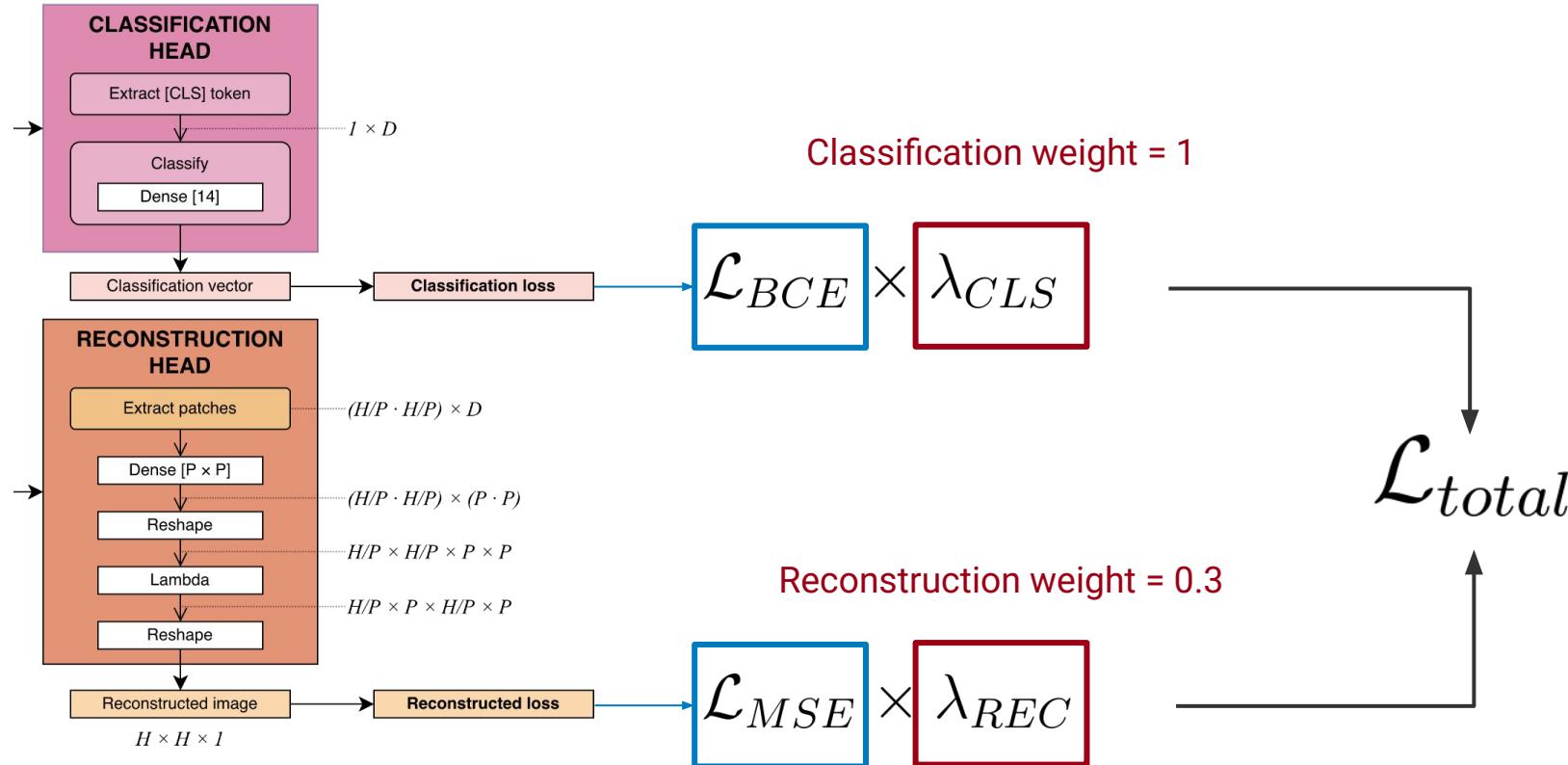


RR-ViT - Reconstruction head

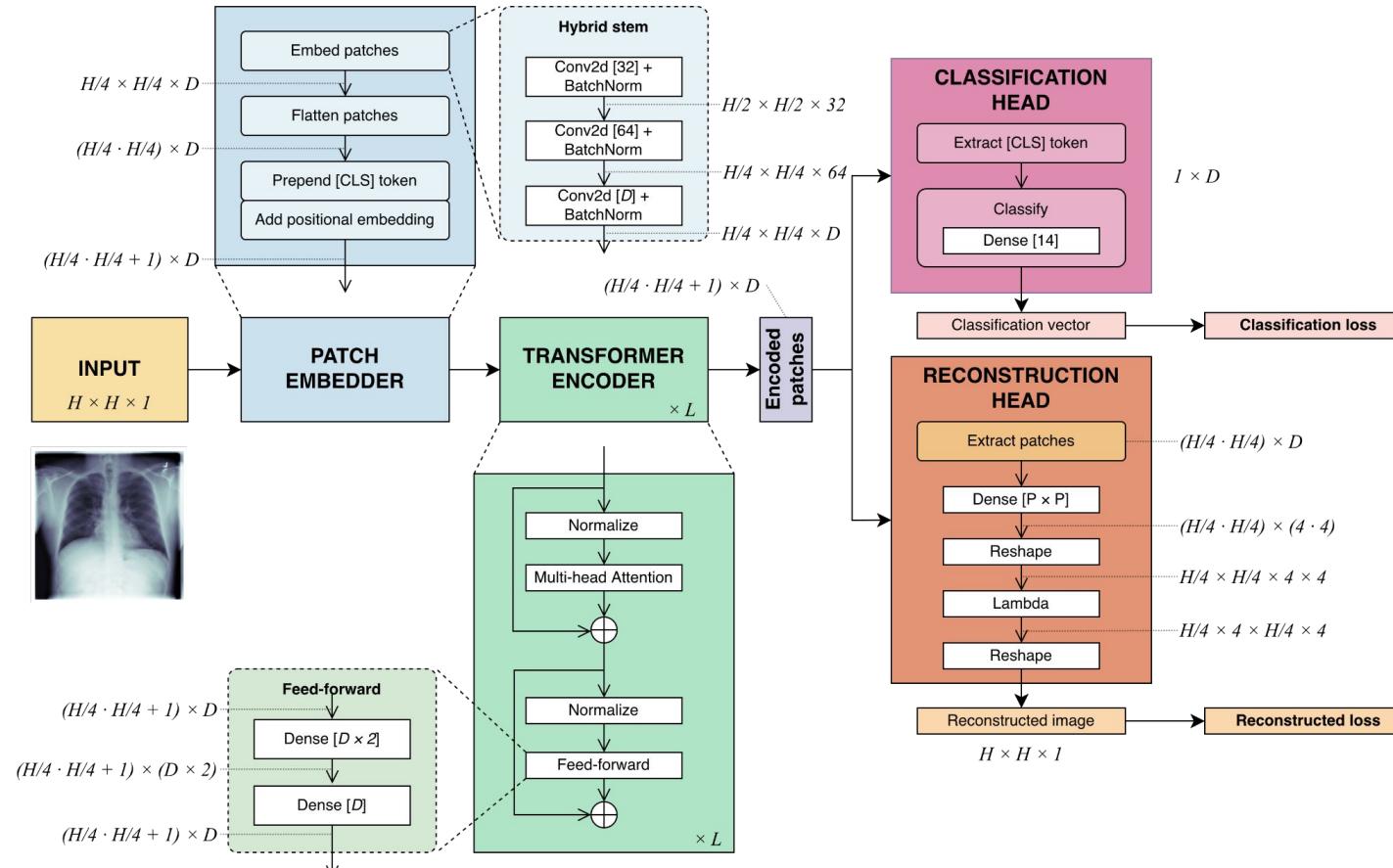
- Use patch tokens discarding [CLS] token to reconstruct input image
- Auxiliary reconstruction objective encourages the encoder to preserve meaningful structure in its latent space
- Lightweight decoder to ensure representation learning happens in the shared encoder
- Each D -d patch token is projected back to $P \times P$ pixels using a dense layer
- Reconstruction loss: mean square error (MSE)



RR-ViT - Joint optimization



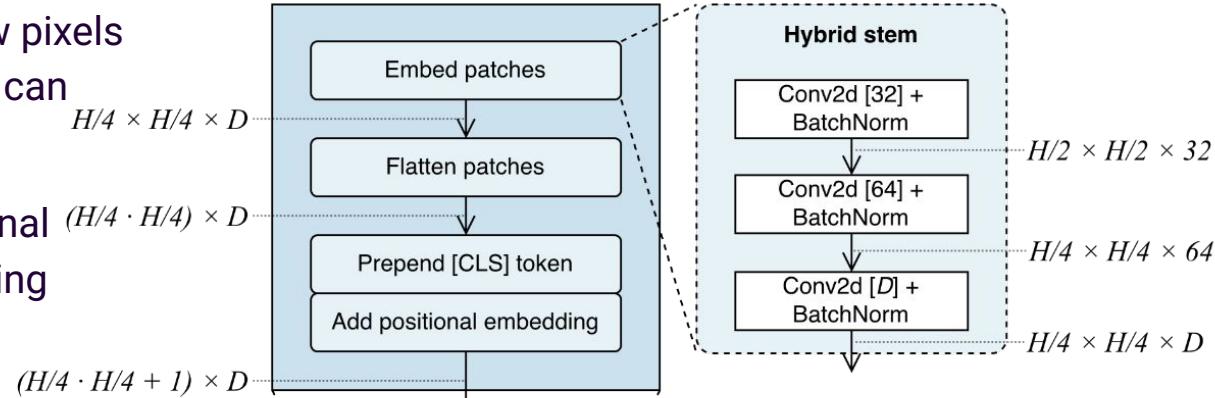
Hybrid Reconstruction-Regularized Vision Transformer (Hybrid RR- ViT)



Hybrid RR-ViT - Convolutional hybrid stem

- **RR-ViT** drawback: mapping raw pixels to patches via linear projection can discard fine-grained details

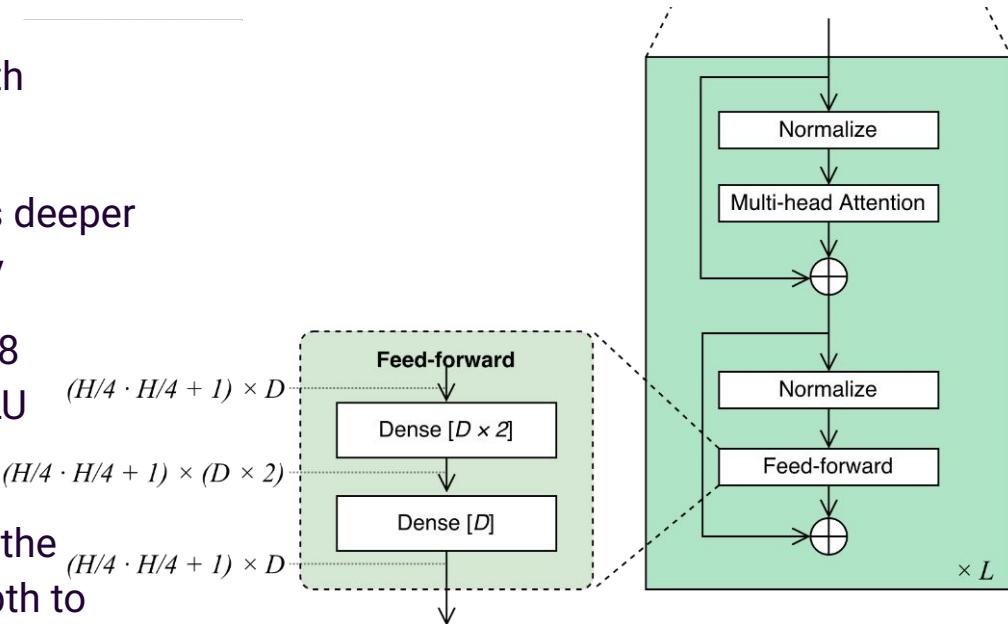
- **Hybrid RR-ViT** uses convolutional feature maps as tokens, following hybrid tokenization idea [6]



- Hybrid stem: 3 consecutive 3x3 convolutions, allowing extraction of hierarchical representation, ensuring tokens can capture complex local contexts
- Finer tokenization: e.g., 64 \times 64 input image
 - RR-ViT with P=8 yields $(64/8)^2 = 64$ tokens
 - Hybrid RR-ViT yields $(64/4)^2 = 256$ tokens

Hybrid RR-ViT - Upgraded Transformer architecture

- Full standard Transformer architecture with feed-forward network
- Increases representational power, enables deeper stacks without sacrificing training stability
- 2 sublayers: (1) multi-head self-attention (8 attention heads), (2) 2-layer MLP with GELU activation
- L=8 stacked Transformer layers: ensuring the model possesses sufficient non-linear depth to process high-resolution tokens



UNIVERSITÀ
DEGLI STUDI
DI PADOVA

RESULTS

Evaluation metrics
Experimental setup
Performance comparison
Efficiency considerations

Evaluation metrics

Accuracy (ACC)

- Proportion of sample for which the predicted 14-dimensional label vector exactly matches the ground-truth vector
- Binary prediction obtained by thresholding per-class sigmoid probabilities (0.5 threshold)

$$\text{ACC} = \frac{1}{N} \sum_{i=1}^N \mathbb{I}\{\hat{\mathbf{y}}_i = \mathbf{y}_i\}$$

Area under the ROC curve (AUC)

- Capture ranking quality better under class imbalance
- Aggregate class-wise AUC values using a macro-average

$$\text{AUC} = \frac{1}{14} \sum_{k=1}^{14} \text{AUC}_k$$

Experimental setup

Setup

- TensorFlow implementation
- Experiments run on Kaggle's NVIDIA Tesla P100 GPUs
- Experiments on 3 dimensions: 64×64 , 128×128 , 224×224

Models

- CNN baseline models: ResNet50, DenseNet121, EfficientNetB0
 - TensorFlow implementation
 - Trained from scratch
- MedViT: best reported ChestMNIST performance from original paper
- Hybrid RR-ViT: no results on 224×224 due to memory constraints

Performance comparison - 64 × 64

Model	ACC	AUC	# params	Inference
ResNet50	0.947	0.686	24.12M	1.848s
DenseNet121	0.948	0.726	7.30M	3.546s
EfficientNetB0	0.948	0.743	4.38M	2.480s
MedViT	N/A	N/A	N/A	N/A
DBCT	0.947	0.747	2.41M	0.193s
RR-ViT	0.947	0.722	0.29M	0.339s
Hybrid RR-ViT	0.948	0.755	4.46M	1.357s

Performance comparison - 128 × 128

Model	ACC	AUC	# params	Inference
ResNet50	0.948	0.706	24.12M	1.968s
DenseNet121	0.948	0.758	7.30M	3.118s
EfficientNetB0	0.948	0.740	4.38M	2.068s
MedViT	N/A	N/A	N/A	N/A
DBCT	0.947	0.736	2.41M	0.190s
RR-ViT	0.948	0.733	0.32M	0.351s
Hybrid RR-ViT	0.948	0.761	4.66M	10.33s

Performance comparison - 224 × 224

Model	ACC	AUC	# params	Inference
ResNet50	0.947	0.702	24.12M	2.237s
DenseNet121	0.948	0.701	7.30M	3.385s
EfficientNetB0	0.948	0.729	4.38M	1.982s
MedViT	0.959	0.805	57.69M	N/A
DBCT	0.947	0.747	2.45M	0.176s
RR-ViT	0.948	0.738	0.38M	1.323s
Hybrid RR-ViT	N/A	N/A	N/A	N/A

Efficiency considerations

DBCT

- Consistently lightweight & lowest inference times across all dimensions
- Performance comparable/better than CNN baselines at low resolutions
- Room for performance improvement at higher resolution

RR-ViT

- Very parameter efficient: <0.4M parameters
- Performance comparable/close to CNN baselines
- Strong candidate when memory footprint is a primary constraint
- Simplified Transformer might not be enough

Hybrid RR-ViT

- Highest AUC among trained models
- High computational costs: notably slower at 128×128
- High memory costs: cannot be trained at 224×224
- Performance improvements may come at the cost of increased latency and hardware requirements

UNIVERSITÀ
DEGLI STUDI
DI PADOVA

DEMO