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PROBLEM OVERVIEW
Dataset

Processing pipeline 
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ChestMNIST dataset

● Task: multi-label lung disease classification

● Dataset: ChestMNIST [1], standardized dataset of 
112,120 X-ray images from 30,805 patients

● 3 resolutions: 64 ✕ 64, 128 ✕ 128, 224 ✕ 224

● Label: 14-D binary vector = 14 disease labels

● Possible to have no associated disease

● Pre-split train/validation/test sets 
(78,468/22,433/11,219 images)

[1] J. Yang, R. Shi, D. Wei, Z. Liu, L. Zhao, B. Ke, H. Pfister, and B. Ni, “Medmnist v2 - a large-scale 
lightweight benchmark for 2d and 3d biomedical image classification,” Scientific Data, vol. 10, Jan. 2023.
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Processing pipeline

Rescaling
Divide all by 255 so each 
pixel becomes a float in 
range [0, 1]

Augmentation
Lightweight geometric 
transformations: flipping, 
rotating, zooming, 
translating

Grayscale images, 
each pixel = integer 
in range [0, 255]

Parameterized function 
mapping input image to 
a multi-label 
classification vector

Compare predicted 
probability vector with 
ground-truth vector

Measure performance 
(ACC, AUC), complexity 
(# parameters), and 
latency (inference time)



LEARNING FRAMEWORKS
Baseline models
Proposed models 
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Baseline models

CNN-BASED 

1. ResNet50: Residual connection

2. DenseNet: Dense features between layers

3. EfficientNet-B0: Compound scaling

HYBRID

4. MedViT: Vision Transformer
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Baseline models - ResNet50

ResNet50 Architecture [2]

[2] ResNet-50 Architecture

● 49 convolutional 
layers 

● 1 fully connected 
layer.

https://www.ultralytics.com/blog/what-is-resnet-50-and-what-is-its-relevance-in-computer-vision


9

Baseline models - DenseNet

Dense connectivity between 
layers:

● Each layer receives feature 
maps from all previous layers

● Feature concatenation instead 
of summation

DenseNet Architecture [3][3] DenseNet Architecture

https://openaccess.thecvf.com/content_cvpr_2017/papers/Huang_Densely_Connected_Convolutional_CVPR_2017_paper.pdf
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Baseline models - EfficientNetB0

EfficientNetB0 Architecture [4] 

[4] EfficientNetB0 Architecture 

● Mobile Inverted Bottleneck 
(MBConv) blocks

● Squeeze-and-excitation 
(SE) modules

https://arxiv.org/pdf/2009.12931
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Baseline models - MedViT

[5] MedViT Architecture

MedViT Architecture [5] 

4 stages:
● Patch Embedding layer
● Efficient Convolution Block (ECB):

○ MHCA as token mixer
○ LFFN as depth-wise convolution

● Local Transformer Block (LTB):
○ Captures low-frequency signals with ESA
○ Captures parallel information with MHCA

● MHCA: Multi-Head Convolutional Attention
● LFFN: Locally Feed Forward Network
● ESA: Efficient Self-Attention

https://arxiv.org/pdf/2302.09462
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Proposed models

1. Dual Branch Cross-Attention Transformer (DBCT)
Structured cross-attention framework that explicitly models local - global features

2. Reconstruction-Regularized Vision Transformer (RR- ViT)
Reconstruction-based regularization strategy

3. Hybrid Reconstruction-Regularized Vision Transformer (Hybrid RR- ViT)
Enhanced reconstruction-based regularization with convolutional stem
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Dual Branch Cross-Attention Transformer 
(DBCT)
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Dual Branch Cross-Attention Transformer 
(DBCT)

● Two convolutional layers use stride 2, progressively reducing spatial resolution:

● A 1 × 1 convolution then projects the channel dimension 
● The spatial grid is reshaped into a sequence of CNN tokens:
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Dual Branch Cross-Attention Transformer 
(DBCT)

● The input image is partitioned into non-overlapping patches of size p × p: 

● Positional information is encoded into the token sequence
● The Transformer encoder consists of stacked blocks comprising: multi-head 

self-attention, feed-forward network (MLP), and layer normalization
● Self-attention is computed as: 
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Dual Branch Cross-Attention Transformer 
(DBCT)

● Integrate global and local information by a cross-attention, the fused representation is 
computed as: 

● The fused token sequence is normalized and aggregated via global average pooling
● A fully connected layer followed by a sigmoid activation produces multi-label 

predictions
● Focal Loss is used as loss function: 
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Reconstruction-Regularized Vision Transformer 
(RR- ViT)
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RR-ViT - Patch-based encoder

● Partitions the image into non-overlapping patches

● Each patch is mapped to a D-dimensional latent 
space using a learnable linear projection

● Prepend learnable [CLS] token to enable global 
aggregation for classification

● Add learnable 1-dimensional positional embedding 
to preserve spatial ordering
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● L=4 stacked Transformer layers

● Minimal block with pre-normalization and 
multi-head self-attention (4 attention heads) with 
residual connections

● Lightweight design and simplified attention 
mechanism

● Encoded patches with dimension:

RR-ViT - Patch-based encoder
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RR-ViT - Classification head

● Uses the final state of the [CLS] token; global 
representation of the image after having passed 
through attention mechanism

● Token is passed through a dropout & a dense layer 
with K=14 units with sigmoid activation

● Output: multi-label binary classification vector

● Classification loss: binary cross-entropy (BCE)
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● Use patch tokens discarding [CLS] token to 
reconstruct input image

● Auxiliary reconstruction objective encourages
the encoder to preserve meaningful structure
in its latent space

● Lightweight decoder to ensure representation 
learning happens in the shared encoder

● Each D-d patch token is projected back to P x P 
pixels using a dense layer

● Reconstruction loss: mean square error (MSE)

RR-ViT - Reconstruction head
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Classification weight = 1

Reconstruction weight = 0.3

RR-ViT - Joint optimization
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Hybrid Reconstruction-Regularized Vision Transformer 
(Hybrid RR- ViT)
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[6] A. Dosovitskiy, “An image is worth 16x16 words: Transformers for image recognition at scale,” arXiv preprint arXiv:2010.11929, 2020.

● RR-ViT drawback: mapping raw pixels 
to patches via linear projection can 
discard fine-grained details

● Hybrid RR-ViT uses convolutional 
feature maps as tokens, following 
hybrid tokenization idea [6]

Hybrid RR-ViT - Convolutional hybrid stem

● Hybrid stem: 3 consecutive 3x3 convolutions, allowing extraction of hierarchical 
representation, ensuring tokens can capture complex local contexts

● Finer tokenization: e.g., 64 ✕ 64 input image
○ RR-ViT with P=8 yields (64/8)^2 = 64 tokens
○ Hybrid RR-ViT yields (64/4)^2 = 256 tokens
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● Full standard Transformer architecture with 
feed-forward network

● Increases representational power, enables deeper 
stacks without sacrificing training stability

● 2 sublayers: (1) multi-head self-attention (8 
attention heads), (2) 2-layer MLP with GELU 
activation

● L=8 stacked Transformer layers: ensuring the 
model possesses sufficient non-linear depth to 
process high-resolution tokens

Hybrid RR-ViT - Upgraded Transformer architecture
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Evaluation metrics

● Proportion of sample for which the 
predicted 14-dimensional label vector 
exactly matches the ground-truth vector

● Binary prediction obtained by 
thresholding per-class sigmoid 
probabilities (0.5 threshold)

Accuracy (ACC) Area under the ROC curve (AUC)

● Capture ranking quality better under 
class imbalance

● Aggregate class-wise AUC values using 
a macro-average
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● TensorFlow implementation

● Experiments run on Kaggle’s NVIDIA 
Tesla P100 GPUs

● Experiments on 3 dimensions: 64 ✕ 64, 
128 ✕ 128, 224 ✕ 224

Experimental setup

Setup Models

● CNN baseline models: ResNet50, 
DenseNet121, EfficientNetB0
○ TensorFlow implementation
○ Trained from scratch

● MedViT: best reported ChestMNIST 
performance from original paper

● Hybrid RR-ViT: no results on 224 ✕ 
224 due to memory constraints
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Performance comparison - 64 ✕ 64

Model ACC AUC # params Inference

ResNet50 0.947 0.686 24.12M 1.848s

DenseNet121 0.948 0.726 7.30M 3.546s

EfficientNetB0 0.948 0.743 4.38M 2.480s

MedViT N/A N/A N/A N/A

DBCT 0.947 0.747 2.41M 0.193s

RR-ViT 0.947 0.722 0.29M 0.339s

Hybrid RR-ViT 0.948 0.755 4.46M 1.357s
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Performance comparison - 128 ✕ 128

Model ACC AUC # params Inference

ResNet50 0.948 0.706 24.12M 1.968s

DenseNet121 0.948 0.758 7.30M 3.118s

EfficientNetB0 0.948 0.740 4.38M 2.068s

MedViT N/A N/A N/A N/A

DBCT 0.947 0.736 2.41M 0.190s

RR-ViT 0.948 0.733 0.32M 0.351s

Hybrid RR-ViT 0.948 0.761 4.66M 10.33s
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Performance comparison - 224 ✕ 224

Model ACC AUC # params Inference

ResNet50 0.947 0.702 24.12M 2.237s

DenseNet121 0.948 0.701 7.30M 3.385s

EfficientNetB0 0.948 0.729 4.38M 1.982s

MedViT 0.959 0.805 57.69M N/A

DBCT 0.947 0.747 2.45M 0.176s

RR-ViT 0.948 0.738 0.38M 1.323s

Hybrid RR-ViT N/A N/A  N/A N/A
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Efficiency considerations

● Consistently lightweight & 
lowest inference times 
across all dimensions

● Performance 
comparable/better than CNN 
baselines at low resolutions

● Room for performance 
improvement at higher 
resolution

DBCT RR-ViT Hybrid RR-ViT

● Very parameter efficient: 
<0.4M parameters

● Performance 
comparable/close to CNN 
baselines

● Strong candidate when 
memory footprint is a 
primary constraint

● Simplified Transformer might 
not be enough

● Highest AUC among trained 
models

● High computational costs: 
notably slower at 128 ✕ 128

● High memory costs: cannot 
be trained at 224 ✕ 224

● Performance improvements 
may come at the cost of 
increased latency and 
hardware requirements
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