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Labels: 00010100000000 Labels: 00110000000000
Infiltration, Labels: 00000001000000 Effusion, Labels: 00000100000000
Nodule Pneumothorax Inflltratlon Nodule

1™ N

Labels: 10000000001000 Labels: 10000001000000 Labels: 00110000000000
Atelectasis, Atelectasis, Effusion, Labels: 10000000000000

Emphysema Pneumothorax Infiltration Atelectasis

e 3 resolutions: 64 X 64,128 X 128,224 X 224
e Label: 14-D binary vector = 14 disease labels g W m n
e Possible to have no associated disease

Labels: 01000000000000 Labels: 00000100000000 Labels: 00000100000000 Labels: 00010000000000
Cardiomegaly Nodule Nodule Infiltration

e Pre-split train/validation/test sets ' e B n q
(78,468/22,433/11,219 images) | ’
|

2k

e Task: multi-label lung disease classification

e Dataset: ChestMNIST [1], standardized dataset of
112,120 X-ray images from 30,805 patients

i

[1] J. Yang, R. Shi, D. Wei, Z. Liu, L. Zhao, B. Ke, H. Pfister, and B. Ni, “Medmnist v2 - a large-scale
lightweight benchmark for 2d and 3d biomedical image classification,” Scientific Data, vol. 10, Jan. 2023.



Processing pipeline
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INPUT IMAGES PREPROCESSING MODELS EVALUATION
Convolutional Per-label
feature extractors g
Rescaling/ Transformer probabllltl.es
_> normalizing E— encoder — Thr;snhk?:’dmg/
- . E Augmentating Cross-attention Metric comp?:tation
Reconstruction (ACC, AUC)
regularization
Hx Hx1 Rescaling
Divide all by 255 so each Parameterized function Compare predicted
Grayscale images, pixel becomes a float in mapping input image to probability vector with
each pixel = integer range [0, 1] a multi-label ground-truth vector
in range [0, 255] classification vector
Augmentation Measure performance
Lightweight geometric (ACC, AUC), complexity
transformations: flipping, (# parameters), and
rotating, zooming, latency (inference time)

translating



UNIVERSITA
DEGLI STUDI
DI PADOVA

LEARNING FRAMEWORKS

Baseline models
Proposed models
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CNN-BASED

1. ResNet50: Residual connection

2. DenseNet: Dense features between layers
3. EfficientNet-B0: Compound scaling
HYBRID

4. MedViT: Vision Transformer
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(x3) (x4) (x6) (x3)
o™
= - < ®
- W 0 N O O N N (N = X
5 e | |S8&| |&Kks| |§5aR £
. w — —
e 49 convolutional o 3 B 5o s 5 2=l T B PREDICTED
INPUT ‘0—%—>ggg—>ccc —»ECC———)EEC—g—)g—)SUBECT
layers FRAMES 5| 87| 888 888 8838 888 2 | J
S X X% % R % PRYE 9% ° BE
e 1 fully connected R
layer.
1 + 9 + 12 + 18 + 9 + 1 = 50layers

ResNet50 Architecture [2]

[2] ResNet-50 Architecture °



https://www.ultralytics.com/blog/what-is-resnet-50-and-what-is-its-relevance-in-computer-vision

Baseline models - DenseNet

Dense connectivity between
layers:

e Each layer receives feature
maps from all previous layers

e Feature concatenation instead
of summation

[3] DenseNet Architecture

DenseNet Architecture [3]
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https://openaccess.thecvf.com/content_cvpr_2017/papers/Huang_Densely_Connected_Convolutional_CVPR_2017_paper.pdf
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EfficientNetBO Architecture [4]

10

[4] EfficientNetBO0 Architecture


https://arxiv.org/pdf/2009.12931

Baseline models - MedViT

4 stages:
Patch Embedding layer
e Efficient Convolution Block (ECB):
o MHCA as token mixer
o LFFN as depth-wise convolution
e Local Transformer Block (LTB):
o Captures low-frequency signals with ESA
o Captures parallel information with MHCA

e MHCA: Multi-Head Convolutional Attention
e LFFN: Locally Feed Forward Network
e ESA: Efficient Self-Attention

[5] MedViT Architecture

e
| Conv3X3XNo ]

Patch Embedding

ECB X Ny

~ XL
LTB X0

;l Patch Momentum
Changer

Patch Embedding

/—17

ECB X Nz
XLz
LTB X 1

Patch Embedding

Patch Embedding
Vs /
ECB X Ng

LTB X1
&

Global Average Pool

{H

ECB X N3
XLy ¥
LTB X 1

MedViT Architecture [5]

-/ MHCA

E
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Grouped
Conv3 X3
|

[

RelU |

Conv 1X1
]

BN
\/

T |

Q K V
J R
| Avg_pool

Multi-Head
Self-Attention

./ LFFN l

Seq2img
Conv 1X1

|
3x3DW Conv |

Conv1X1

Img2Seq


https://arxiv.org/pdf/2302.09462
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1. Dual Branch Cross-Attention Transformer (DBCT)
Structured cross-attention framework that explicitly models local - global features

2. Reconstruction-Regularized Vision Transformer (RR- ViT)
Reconstruction-based regularization strategy

3. Hybrid Reconstruction-Regularized Vision Transformer (Hybrid RR- ViT)
Enhanced reconstruction-based regularization with convolutional stem
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Dual Branch Cross-Attention Transformer AU pEcL Stunt

(DBCT) ’n,é & DI PADOVA

¢:5 LOCAL FEATURE TOKENS
‘Zt Conv Block 1 N Conv Block 2 “ Conv Block 3
o (Conv21-BN-ReLu, s=2) ”| (Conv21-BN-RelLu, s=2) | (Conv21-BN-ReLu) :|
(11]
% CNN tokens (C) < Projection & reshape
£ LayerNorm +
. O v y v
[ N2 :
D = Cross-attention fusion Global Average Pooling T
o oz Sigmoid
= o W (Q=T, K=V=C)
= oL A Multi-label prediction [14] | |
< <
E GLOBAL CONTEXTUAL MODELING
=T
g g Global tokens (T) < |
&< o
> 1
é 2 Patch embedding » Positional encoding (P) » Transformer encoder
-
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(DBCT) “ %S b1 PADOVA

a:) LOCAL FEATURE TOKENS

= Conv Block 1 N Conv Block 2 ~ Conv Block 3

é (Conv21-BN-Relu, s=2) ”| (Conv21-BN-ReLu, s=2) | (Conv21-BN-Relu) ]
m

g I CNN tokens (C) < Projection & reshape

e Two convolutional layers use stride 2, progressively reducing spatial resolution:

H W H W

HxW — — X — — — X —

2 2 4 4

e A1 x 1 convolution then projects the channel dimension

e The spatial grid is reshaped into a sequence of CNN tokens:
H W
CeRYP N.=—. —

¢ 4 4
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GLOBAL CONTEXTUAL MODELING

Global tokens (T) < 1

[
Patch embedding » Positional encoding (P) » Transformer encoder M

TRANSFORMER
BRANCH

e The input image is partitioned into non-overlapping patches of size p x p:
H W
To e RY*P, Ny =— . —
p p
e Positional information is encoded into the token sequence
e The Transformer encoder consists of stacked blocks comprising: multi-head
self-attention, feed-forward network (MLP), and layer normalization
e Self-attention is computed as:

k



Dual Branch Cross-Attention Transformer ) U
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(DBCT) DI PADOVA
Cz) l, LayerNorm + v
0 =2 .
= Cross-attention fusion Global Average Pooling e
o (Q=T, K=V=C) :
oE T Multi-label prediction [14] I
< «

e Integrate global and local information by a cross-attention, the fused representation is

computed as: KT
T’ = Softmax (Q ) %
Vv

e The fused token sequence is normalized and aggregated via global average pooling
e A fully connected layer followed by a sigmoid activation produces multi-label
predictions

e Focal Loss is used as loss function:
14

Ligcar = — Y _ o1 = i) ye log () — (1 — a)g (1 — ye) log(1 — i)
k=1

16
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HxHx1

H/P x H/P x D - CLASSIFICATION

] HEAD

[ Extract [CLS] token

Flatten patches

(H/P - H/P) x D

Prepend [CLS] token ’ — \l, 1 xD

Embed patches

Classi
Add positional embedding ’ iy

(H/P-H/P+ 1) x D

(H/P -H/P+ 1) xD

Y
| Classification vector l—)' Classification loss

INPUT R PATCH .| TRANSFORMER
EMBEDDER ENCODER

RECONSTRUCTION
HEAD

4
Encoded
patches

HxHx1

XL

[ Extract patches ] --------- (H/P - H/P) x D

Dense [P x P]

Normalize —> (H/P - H/P) x (P - P)
Multi-head Attention . [/P x H/P X P X P
2
-

H/P x P x H/P x P

17

| Reconstructed image l—)' Reconstructed loss
HxHx1




RR-VIiT - Patch-based encoder
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e Partitions the image into non-overlapping patches

e Each patch is mapped to a D-dimensional latent
space using a learnable linear projection

e Prepend learnable [CLS] token to enable global
aggregation for classification

e Add learnable 1-dimensional positional embedding
to preserve spatial ordering

HxHx]

H/P x H/P x D

(H/P - H/P) x D

Embed patches

| Conv2D

e \J/

Flatten patches

I

V

Prepend [CLS] token

Add positional embedding

(H/P-H/P +1) x D~

INPUT
HxHx]

PATCH
EMBEDDER

18




RR-VIiT - Patch-based encoder
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e L=4 stacked Transformer layers

e Minimal block with pre-normalization and

multi-head self-attention (4 attention heads) with
residual connections

e Lightweight design and simplified attention
mechanism

e Encoded patches with dimension: (E : % + 1> % D

TRANSFORMER
ENCODER

x L

Encoded

\
| Normalize |

v

| Multi-head Attention |

\

“VV

X L

DI PADOVA

patches |
|

19
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e Uses the final state of the [CLS] token; global CLASSIFICATION

representation of the image after having passed HEAD

through attention mechanism [ Extract [CLS] token

, —> v ] X D

e Token is passed through a dropout & a dense layer r —— )

with K=14 units with sigmoid activation [ Demseial |
e Output: multi-label binary classification vector :

12

® CIaSSiﬁcation |OSS: binary Cross-entropy (BCE) | Classification vector l—)| Classification loss

20



UNIVERSITA

RR-VIiT - Reconstruction head W8 oecu st

DI PADOVA

e Use patch tokens discarding [CLS] tokento - RECONSTRUCTION
reconstruct input image HEAD
.- . . . [ Extract patches ~  [-of (H/P - H/P) x D
e Auxiliary reconstruction objective encourages "
the encoder to preserve meaningful structure [ DensePxP] |
in its latent space —> ¥ - (H/P-H/P) x (P P)
| Reshape |
e Lightweight decoder to ensure representation ) “H/P x H/P x P x P
learning happens in the shared encoder | Lamiba |
" ~H/P % P x H/P x P
e Each D-d patch token is projected backto P x P | Reshape |
|

pixels using a dense layer v
| Reconstructed image I—)' Reconstructed loss

HxHx]

e Reconstruction loss: mean square error (MSE)

21
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CLASSIFICATION
HEAD

[ Extract [CLS] token ]

Classity Classification weight = 1

Dense [14]

A

| Classification vector l—)' Classification loss |—> £ B C E >< A C’ L S

RECONSTRUCTION
HEAD

[ Extract patches ] ~~~~~~~ ~(H/P + H/P) X D

Dense [P x P]

v
| Reconstructed image I—)| Reconstructed loss | —— £M SE >< AREC

HxHx1

(H/P - H/P) x (P P) L:total

H/P x H/P x P x P

Reconstruction weight = 0.3
H/P x P x H/P x P

22
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- Hybrid stem :
[ Embed patches ]
Conv2d [32] + p
H/4 x H/4 X D fpromm] CLASSIFICATION
[ Fl ] 5 v H/2 x H/2 x 32 HEAD
atten patches ' i
\ : Conva2d [64] + H
(H/4 - H/4) X D] \1/ | E [ Extract [CLS] token
[ Prepend [CLS] token ’ I i H/4 % H/4 x 64— \l/ 1 xD
i 5 =
[ Add positional embedding ’ “‘E BatchNorm : GeEEiy
' b

(H/4-H/4+1) xD

(H/4 -H/4 + 1) xD

A
g - | Classification vector I—)' Classification loss
O R PATCH .| TRANSFORMER SE|
EMBEDDER d ENCODER S 2 RECONSTRUCTION
HxHxI SIE wa HEAD
[ Extract patches } -------- (H/4 - H/4) x D
Normalize —> = =

(H/4 - H/4) % (4-4)

Multi-head Attention H/4 x H/4 x 4 x 4

o H/4 x4 x H/4 x 4

Feed-forward : +
1 8 Normalize | Reconstructed image l—){ Reconstructed loss

HxHx1

(H/4-HA + 1) x D}

: Dense [D x 2] : L
(H/4-H/4 + 1) x (D % 2) E i Feed-forward

23

! Dense [D] : an
(H/4-H/4 + 1) x D el i
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e RR-VIiT drawback: mapping raw pixels , Hybrid stem ]
. . . . Embed patch '
to patches via linear projection can ‘ e Ipa" * \ [ Comvzd@a+
. . . H/4 x H/4 x D \ l BatchN :
dlscard ﬂne_gralned detalls g ¥ \‘ E ac\l/orm ............ v /2 % H/2 % 32
Flatten patches v |
. . ) I o Convad [64] + '
e Hybrid RR-ViT uses convolutional (F/4-H/4) x D v 1 Bat°':£‘°’m it 4 < 64
i P d CLS k \“ E ........................ : . X X
feature maps as tokens, following e L Comedolr ] |
. . . . iti ; ¥ BatchNorm '
hybrld tOkenlzatlon Idea [6] Add pOSltlonal embeddlng “:‘ ____________ \b____________;IH/4 X H/4 X D
(H/4-H/A4 + 1) x D

e Hybrid stem: 3 consecutive 3x3 convolutions, allowing extraction of hierarchical
representation, ensuring tokens can capture complex local contexts

e Finer tokenization: e.g., 64 X 64 input image
o RR-ViT with P=8 yields (64/8)"2 = 64 tokens
o Hybrid RR-VIT yields (64/4)"2 = 256 tokens

24
[6] A. Dosovitskiy, “An image is worth 16x16 words: Transformers for image recognition at scale,” arXiv preprint arXiv:2010.11929, 2020.
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e Full standard Transformer architecture with

feed-forward network | Normalze |
e Increases representational power, enables deeper  Whilh ot Aextion |
stacks without sacrificing training stability D
e 2 sublayers: (1) multi-head self-attention (8 " Feedfprward |-

. . ‘H/4 - H/4 X e ) . i
attention heads), (2) 2-layer MLP with GELU Dy somerpans B B N | Nm"if"ze |
aCtlvatlon (H/4-H/4 + 1) x (D x 2) i .......................... \1/ i | Feed-forward |

= ; . Dense [D] )
e =8 stacked Transformer layers: ensuring the s - s + 1y x D- S NP .

model possesses sufficient non-linear depth to
process high-resolution tokens

25
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Accuracy (ACC) Area under the ROC curve (AUC)
e Proportion of sample for which the e Capture ranking quality better under
predicted 14-dimensional label vector class imbalance

exactly matches the ground-truth vector e Aggregate class-wise AUC values using

e Binary prediction obtained by a macro-average
thresholding per-class sigmoid 1 14
robabilities (0.5 threshold AUC = — AUC
p ( ) — D AUG,
k=1
1 N

1=1
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Experimental setup 95 DEGLI STUDI

Setup Models

e TensorFlow implementation e CNN baseline models: ResNet50,
DenseNet121, EfficientNetB0
o TensorFlow implementation
o Trained from scratch

e Experiments run on Kaggle's NVIDIA
Tesla P100 GPUs

e Experiments on 3 dimensions: 64 X 64,

128 X 128, 224 X 224 e MedViT: best reported ChestMNIST

performance from original paper

e Hybrid RR-ViT: no results on 224 X
224 due to memory constraints

28
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Model ACC AUC # params Inference
ResNet50 0.947 0.686 24.12M 1.848s
DenseNet121 0.948 0.726 7.30M 3.546s
EfficientNetBO 0.948 0.743 4.38M 2.480s
MedViT N/A N/A N/A N/A
DBCT 0.947 2.41M
RR-ViT 0.947
Hybrid RR-ViT 0.948

29
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Performance comparison - 128 X 128

Model ACC AUC # params Inference
ResNet50 0.948 0.706 24.12M 1.968s
DenseNet121 0.948 0.758 7.30M 3.118s
EfficientNetBO 0.948 0.740 4.38M 2.068s
MedViT N/A N/A N/A N/A
DBCT 0.947 2.41M
RR-ViT 0.948
Hybrid RR-ViT 0.948
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Performance comparison - 224 X 224
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Model ACC AUC # params Inference
ResNet50 0.947 0.702 24.12M 2.237s
DenseNet121 0.948 0.701 7.30M 3.385s
EfficientNetBO 0.948 0.729 4.38M 1.982s
MedViT 0.959 57.69M N/A
DBCT 0.947 2.45M
RR-ViT 0.948 0.738
Hybrid RR-ViT N/A N/A

31
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DBCT RR-VIT Hybrid RR-ViT

e Consistently lightweight & LV ery parameter efficients o [ [sEy9A\8[® among trained
lowest inference times <0.4M parameters models

across all dimensions

e Performance e High computational costs:
e Performance comparable/close to CNN notably slower at 128 X 128
comparable/better than CNN baselines

_ _ e High memory costs: cannot
baselines at low resolutions

e Strong candidate when be trained at 224 X 224
e Room for performance memory footprint is a .
_ _ . . e Performance improvements
improvement at higher primary constraint
, may come at the cost of
resolution

e Simplified Transformer might increased latency and
not be enough hardware requirements =
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